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ABSTRACT

Consideration is given to the problem of determining the distribution

of stress in a composite solid corsisting of two half-planes (of different

elastic moduli) joined together when there is a prescribed distribution of

body forces acting in one of them. Included are the following cases:

1. where one half-plane rests on the other, maintaining contact

along their common boundary;

2. where the two half-planes are bond together;

3. where an imperfect bond leaves a Griffith crazk at the interface;

4. where the lower half-plane is completely rigid.



THE TRANSMISSION OF FORCE BETWEEN TWO HALF-PLANES

by

Ian N. Sneddon

1. Introduction.

In this paper we consider the problem of determining the distribution of

stress in a composite solid consisting of two half-planes (of different elastic

moduli) Joined together, when ther:e is a prescribed distribution of body forces

acting in one of them. Particular ca3es of the problem have been considered previously

by Frasier and Rongved (1] and by Dunders [2].

It is assumed that in the upper half-plane y > 0 which is occupied by elastic

material with rigidity modulus G1 and Pclsscn's ratio r there is a prescribed

distribution of body forces, and that there is a displacement field {u0 (x, y),
x

u0 (x, y)} which has the correct singularities to describe this disEribution. We
y

consider the case of plane strain in which it is natural to ýake G, and K1  3 - 4n

as the elastic constants. The advantage in this choice of constants is that

the results for plane stress rake ewactly the same form except th-t in this case

SI = (3 - nl)/(0 + nl). The !,wet half-plane y < 0 is assumed to be occupied by

an elastic material with constarcs G2 and i2'

In §3 we consider the si'~uatisn in which one half-oplane *ests on the other

ard derive formulae for the ca!culacion if the displa-ement and scress fields in

0

terms of the prescribed displ:<temenr. vector u , It i& assumed that the two half-

planes remain in conra:t along the entire length of thei common boundary.

These formulae take much simpler torms if the displacement vector u° , which.is

arbitrary apart from the fact thar i" must have the right kind Cf &ingularities

to account from the prescribed disý'rbution of body forces, is ',h-.sen in such a

wa&7 that u0 (x, 0) • 0 and o (x, 0'. 0 (This can often be arhieved by the usey XY
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of an "image" method of the kind represented pictorially in Fig. 1). In this

case, for instance, we obtain the formula

a (X, 0-) - a (x, 0+) - Da°0 (x, 0) (1.1)
yy yy yy

where D is the constant defined by the equation

,(K + l)r

D 1 + 5r + (< 2 + 1) 2 =

To illustrate the use of the formulae we consider the problem of calculating the

stress field due to a point force (X, -Y), (X > 0, Y > 0) acting at the point

(0, c), c > 0, in the upper half-plane.

In §4 we consider the situation in which the two half-planes aie bonded

together. The formulae are now mucd more complicated. For instance, even in

0 0the symmetrical case in which u°(x, 0) _ 0 and a (x, 0) = 0 the formulay xy

corresponding to (1.1) is of the form

Du (x, 0)
a yy (x, 0-) =D 1 a x,0) -D 2G2  x

where D1 snd D2 are numerical constants (cf. equation (4.5) below). Again, the

method is illustrated by deriving the formula appropriate to the case in which

a point force acts in the upper half-plane.

In §5 we consider the situation in which the bonding between the Lwo half-

planes is not perfect but leaves a Griffith crack at the interface of the two

half-.'anes. It is shown that the solution of the problem in which the crack

is openea. out by the application of prescribed internal pressure can be reduced

to that of a set of four simultaneous dual integral equations.

Finally, in §6 we discuss the special casL in whizh the lower half-plane

is completely rigid.
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2. The Basic Solutions of the Equilibrium Equations in thce Case of Plane Strain.

By the use of the Four-er transform (see, e.g., [3], p. 404) we can show

that the equations of plane strain have solution

u (x, y) = iF*[ý-{(K + I)2X + (3 - K)2X} ; + x] (2.1)Dy 2

u (X, y) = F•[-2{( + )X (5 + ) (2.2)(x ){y3)~-(5+~) •-• ; •- ÷x]J22

where the function X(Q, y) satisfies the equation

I 12
- X(,) = 0. (2.3)

laY

The c ,nstant K is defined in terms of the Poisson ratio n Through the equation

K = 3- 4n (2.4)

and F* denotes the operator defined by the equation

1 y) -i~x

F*[f(Q, y); 1÷x] 2 J f(9, y)e d9 (2.5)

i.e. it is the inverse of the operator F defined by

F[)(x, y); x (x, y)eiCx dx. (2.6)

If we take for X the function

1 -1 ~-2 1 1
X(£, y) -1! ,-{-(K - 1)A + -(K + 1)L - (A -WBy}e-l•ly (2.7)

we obtain the displacement field

u (x, y) = F*[iC 'C- (A - B)-ýJyje-ICIY' x] (2.8)(AXj!yex
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u (x, y) = F*[II- K(A- B)1y}e-Y (2.9)

which is such that

u (X, 0) = F*[it-A(Q); x] (2.10)

u (x, 0) = F*[1j4-1B(); x] (2.11)

1-1

O (X, 0) = -K-G F*[i sgn ý{(K.+ 1)A(Q) + (K- 1)B(Q)}; x] (2.12)
xy

a (x, 0) = -K-G F*[(< - 1)A(E) + (K + 1)B(Q); x], (2.13

yy

In the two latter equations G denotes the rigidity modulus.

On the other hand, if we take for X the function

1 - 1 -2{1( 1)A

X(C,, y) = 4 1
[&V

2 (K - 1)A - 2(K + 1)B + (A + B)lWIy}el•ly (2.14)

we obtain the displacement field

"u (x, y) = F*[i- 1 {A + K-1(A + B) IJyye[llY; x] (2.15)

"u (x, y) = F*[II-I{B - K-
1 (A + B)I•Iy}e1KIY; ÷ x] (2.16)

y

which is such that

u (x, 0) = F*[i-I A(ý); x] (2.17)X

u (x, 0) = F*[ICI- B(C); x] (2.18)y

Sxy(x, 0) = <IG F*[i sgn {((K- 1)A(Q) - ( 1- I)B(F)}; x, (2.19)

a (x, 0) = F*[( -G)A(•) - (K + I)B(ý); x]. (2.20)
yy
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3. One Half-Plane Resting on Another.

We begin by considering the case where one half-space rests upon the other

the loading being assumed to be such that they always remain completely in

contact. The half-space y > 0 is assumed to be occupied by material with rigidity

modulus G, and Poisson's ratio nl, while the half-space y < 0 is assumed to be

.11

occupied by material with rigidity modulus G2 and Poisson's ratio n2. In

conformity with equation (2.4) we write Ki = 3 - 4 n,,K 3 - 4n2 . The

boundary conditions in this case are

u (x, 0+) u (x, 0-) (3.1)
Y Y

Sxy(X, 0+) = ), a xy(X, 0-) = 0 (3.2)

a yy(X, 0+) = ay(X, 0-), (3.3)

We suppose that in the half-space y > 0 there is a distribution of body

forces and that there is a di.splacement field {u0 (x, y). u(x y)} in y > 0x y

which has the correct singularities to describe this distribution. From

equations (2,8), (2.9), (2,15), (2.16) we see that we can describe the displace-

ment field in the composite solid by the equations

u0(x, y) + iF*[- 1{A1 - KI(AI - BI)H~jy}e-l lY; E x], y > 0;
U x(X, y)= iF*[-i {A 2 + K 2

1 (A2 + B-2 ) Iy}eIllY x], y <:

u (x, y) + i•*[,I- 1 {B K-
1 (AI - Bl),I0y}e-ý; 3 j, y >0;

u ex, y) {
yF*[ -1{B2 - 21(A2 + B 2 ye ; x] y < 0,

The boundary conditions (3.1) through (3.3) then lead to the relations
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(IC + 1)A (A ) + (ci - 1)BI(•) - - G-'ýIG (o)

(K 2 + 1)A 2 (E) - (K2 - 1)B 2 (C) = 0

K-1 G( 1A1BK-1 GI( K( EK<2G 2{(2 2 - I)A 2 (ý) - (K2 + I)B 2(•)} = 1 G 1{ I)A() + I + 1)BI()} -1

connecting the unknown functions AI(Q), A2 (Q), BI(Q), B2 (ý) with the known

functions u(4), ;(), O(Q) defined by the equations

A 0v(•) = F[u x, 0); •]
V( ^ (X,0)Vy

0
Q•) = F[ (X 0); C) (3.4)

F[o y(X, 0); E1.
yy

We may write the solution of these equations in the form

A](•) - 1 Q+ llf() - DIýIv(Q)} iK0iGll(Q) (3.5)
IK + 1 {(K2 +11

B Q) = (i2 + 1)f(Q) - DII•(O) (3.6)

A Q) (2 2 - (D -l)jlv(ý) (3.7)
'2' 2 iK2 - K2 + 1 )Iv)

Q) = (K2 + 1)f(Q) - (D- 1)IWIv(Q) (3.8)

where the function f is defined by the equation

f() - IDG2 1{G(&) + (K (3.9)

-d the constants ' and D by the equations

G 2 ( K< I j I ) F1 0D = (3.10)
G(, + I) + ( 2 +i)
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It follows immediately from equations (2.18) and (2,20) that

u (x, 9-) 1 ý(2 + 1)Dw(x) - (D - l)u (x, 0+) (3.11)
yy

ya (X, 0-) = D[o0 (X, 0+) + (Ki - 1)00y(X, 0+) - s(x)] (3.12)
yy yy 1 xy

where the functions w(x) and s(x) are defined by the equations

w(x) = G21F*[I -{&($ + (K 1- 11)(M)}; x] (3.13)
S~4G2

Ksx) = F*[R&v(&); x), (3.14)

0 0 0
When u (x, 0)) ° (x, 0), a (x, 0) are known we can calculate w(x) andSy xy y

s(x) from these equations. 4Je may derive a formal expression for s(x) as

follows:

Since

SF(V(2/Tr)x-; ] i sgn ,

it follows that

F*[i sgn • v(); x] = 1 %•ftdt

Also

F*[Jlilv(Q); x] = *x[i sgn v(Q); x]

so that we abtaln the formula

I d u , (t0)dt
s~x) I d I "(3,15)

IT i X _os e - t

In certain cases iu is possible to choose the ve•.tor (u°, u°) in sucha
X9 a

S way tbat for • valueo ý.f x
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u0(x, 0) E 0, a 0(X, 0) E 0, (3,16)
y xy

when

(E) -- 0, ;(E) 0

for all values of I En that case the equations (3.5) through (3,9) are

replaced by

= 1 ( 2 + 1) - 2 + ()3.7

1 4(K1 + 1) DG2 c(13

B 1 1)DG2
1'&W (3.18)1l• 4 Z(2 2

A2l1 - IIDG-1•) (3.19)

A2S ~(2 2 )Ga~

1 IQ)G21 + a(2 ) (3.20)

and the displacement field is given by the equations

(X, +) 1) GF[i { -1 - 2~y&~e ;-*] (y > 0)

S11

x 4(K 1 + 1) G21[I 1 - y()
SUx(X, Y)=i

!G - 1 + 2+1ay . E )o E x] (y< 0)

2 -l2

K y 2 + 1)D 1)(xI +• + 1'+ .LyL' 2ya~e-() Y;ýx], (y > 0)

u (x, y) =
Y

!DG-IF*[j -1j-I{2 1 -i 21ýjy),( )e Y; E - x] (y 0),

The ccrrespondlng Bxpressions for components of the stress tensor are
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u9 (x, y), - (1 - D)F*[Ki - Ry)e ,IIya(O); g- X1, (y > 0) (3.21)

%x~xY){ = DF*[(l + R•jy)e IY6(Q); • + xj, 
(y <'0)

aa (x, y) - (1 - D)y F*[i~e-EJYk(o); C + x], (y > 0) (3.22)
ay(x , y)

yDFxiye,ý!Y -k x1 (y < 0)

( yx y0 ) - (1 - D)F*[(1 + I4Iy)e-iiYG(0): &-* x1 (y > 0) (3.23)

( Y) jDF*[(l-Jy)eJ ~Y(•); x] (y < 0).

It should be noted that

a (X, 0-) = a (x, 0+) Da D (x, 0+).
yy yy yy

As a particular case we consider the stress field due to a point force

(X, -Y), iX > 0, Y > 0 acting at the point (0, c), c > d\ in the upper-half

plane (cf. Fig,, 1), It is obvious

~YA P(X.y)

(o,0) X

V a

(0

riG i
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from symmetry considexations thee if we consider the displacement field due

to this point force and to the point force (X, Y) at (0, -c) we get a field

which satisfies the conditions (3.16),

Using the well-known expression for the displacement due to a point force

(see, eog., Love, 1944, p, 209) we can easily show that the components of this

displacement field are given by the equacions

22
u y) 2 (< +0 )G1 [)log(r r 2 , + r + +

1 2 L 2 1r1 r2

1) c] (3.24)

Cx, y ) 21r(<K + 1)G1  t2

+ 2( + I) llog(rl/r 2) + x2  _ (3.25)

where r and r2 ate defined by the equations

2 2 2 2 2 2
x +(y - c) . r 2  x + (y+c)

From these expressizn.s we in turn deduce that rhe components of the

stress tensor are given by the equations

I



0 (*, y3) + 4(- c) + (v + c

1r r2 rl x 2

Y -1) Y--( ---Y+ 4 x2 C-+-c- (3.26)2r(K + 1) (< 1 y 2 -,4X 4 ti L r rI r 2 rI r2i)

(X+ ) [(i K1) \r + 2 + + 4x2 + -

1 21 2

+ 2l + C - 1) -L-1 + 4 ~c)2~ (3.27)2Tr(K 1 + 1) 1< r2 r 2 [ rI r2

a(T (X, O) xx (<i -1 + - - 2 2 +
yy 2 + + 1) 1 2

+ 1 (K + 3) i c 4x2 ý • c }] (3.28)

In particular we confirm that the conditions (3to6) are satisfied and that

T (X) X[(Ki- 1) s 2 ]
yy • r (K 1 + 1) x 2 (x +S)

TY+1) L 1 3 2 2 Cx: ~2] (3.29)

whose Fourier transform is readily shown to be

y ( ) g -2':Ee,/(27T)(K + 1) [(K1  + l) + -

[(KT < T ,) W + I) + 2cý 1 (3.30)
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It should be noticed that the value of the ratio X/Y cannot be chosen

arbitrarily in thifý problem since the tw,, half-planes will remain in contact

only if a (x, 0) < 0 for all real values of X, ioe. only ifYY

(K 1 + 3) + (Ki1 - l)t 2 - (X/Y)t{ (K 1 - l)12 - (5 - K 1 0 (3.31)

for all real values of t.

The condition (3-31) is obviously satisfied in the case in which X = 0.

The equations (3.21) through (3.23) then yield the equations
a (X, y) - (l-D)o (X, y) , (y > 0) (3.32)

xx xx

1 >0), y ,( (334)

I ax(X y)- (1 - Dayx ),( )(.3

a (X, Y) =

yy
S(X, y) (y <0)

x'a

a ~(x,y y) -(1 D)a y(X,y y) (y > 0) (3.33)

i yy (X, y)=

Do Dy(x, Y) (Y- Oý )

* where with the notation
io1, y (3.35)

+Da(y - c) rle x + i(y + c)0e

! we have

2IY c4-.
a =- [2((K + l)r 2 [ 2( ± 1)sinO2 cosO2 - C - 3)co62O2 ÷ 2ccs40 2 } - r sin3e2 ]

+ +y 4- cos32xy=-r(l+!r --[(---i- + l)sin2O2 - rc

1y + 2 r 2
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i) 3 + + 4c-s

2 = 1'•( Y + l l 2 (• W K I l+ ) sin n 2 + r t 1 + i)c as2 O2  + 2 r2 1n3 8 ]2

1 1 r11(K 1 + 1)r 1 1

2 Yy 2 c +.i2 +2c 4c cos38lxy Tr (, + 1)r 1 (2l + 1)sinO1  r r-+1 1 1

2 4c 4
ay = + 1)sin3 a ( 3)c2s21 + 2cs481 + +-in3e1]r

Y7 T K+ 1)r1  r2  r31

4, Two Half-Planes Bonded Together°

If the two half-planes are bonded together the conditions (3.1) through

(3-3) are replaced by the condition that both the displacement vector and

the stress tensor must be continuous across y = 0,

Using the same form for the displacement vector as before we find that

the continuity of ux(x, y) and u (x, y) on y - 0 gives the pair of equat2ons
y

A2(Q) A 1I() + iLua•) (4.1)

B2( = ) '%f I ,([ + (4.2)

where f(ý) is defined in (3.4) and

u(C) = Ftu°(x, 0); •

3mll) az the continuety of the stress componenth uxy(X, 0), dym(x, 0) gives

the pair of equations
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From these expressions and the formula

F[yy(X, 0-); 2] = -2G 2 (( 2 - 1)A 2 (4) - (c 2 + i)B 2 (E)]

we deduce that

F[o (x, 0-) = 1 1 + • + 2r 1+ r (<2E)

1 1 1___

+K7.G2 11+ <I( )2++G2[1 +1<i1 + K 2 + + !

Similarly from the equation

F[a (X, 0-); El ff G2 isgnV{(, 2 + 1)A() - 1B - (0

xy222 22

we deduce that

F[Oy (x, 0-);0J - +ir 2 J ririsgn 9&(;) + f + + K+ -- + r()

-+ K2 + -12 2  1. + 2 + + 7

The expression for FLu (x, 0-); E] can be written down directly from equation
Y

(4,4) since by (2,18)

Ffu (X, 0-); k, K BQ)
.y 4

If the conditions (• 16) are satisfied we find that

a (x, 0-) = 21: + <2 Y 1 0+)

""1 'u' (x, 0)
411 < 2 + G2 oX

"L-2
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&+ + 1 G ( x0)

(x, 0- G (46

Ir + •lr -K- ;"F*[isgn E o(&); x], (4.6)

At a general point in the comnosite solid the components of stress in this

case are given by the equations

[C o(x, y) + al(x, y) (y > O)
xx xx

a (X, y) (4.7)
2 x. Y), (y < 0)

Ii ~01
( ) + a 1 (x, y), (y > 0)S•~xyx XY)+ y

Coy(X, y) (4.8)

cr2 (X, y), (y - 0)

IJ (X, y) - i (x, y), (y >O)

ay(X, y) (4.9)
Gyy(X, y)N (y 0)

YY'

where the :omponents of stress in the upper half-plane may be found from the

equations

11 + (Yy = , •_ 1 F*l ('e)JOy; + (4.10)

1 y .

X r yy -, F¢l( - 2,)ý (Ey") +< O'E-, x ] (4.12)
a } -- •.fF 1;l[sgn E4(i - 1,,y *<) *• 'i- -* " ](.2
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with t2 + Gli( + (2 (4.13)
1 K2+ r

-2(1 + 2 Ggt(4.14)i) - - 2i 1 + () (4.14)

while those in the lower half-plane may be found from the equations

2 2 -1 [e IY
OXX + Oyy 2K 2 F* [02()e (4.15)

2 2 -1

lay K 2 F*[{(l + 222•)}e ; I 1 x] (4.16)

2 1~j( -1Vi~~1 2 pi~e

2 -I F*[isgn 11{(l + + K2 }eI 1y; x] (4.17)
S22 F*iW ky)Y2() 12 1p2(&J)

with

2 12 + G2 iru(ý) 1 + 1ij K (:) (4.18)

*2 2 K2 +

In calculating the auxiliary functions 01(r), 22(C)' Y(:), p2 () it is

often useful to make use of the formula

-J&u() = F x x 0); (4.20)0ii
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To illusLrate the use of these formulae we shall agein consider the

stress field due to a point force (X, -Y) acting at the point (0, c) in the

upper half-plane.

Again we take u0(x, y) and u (x, y) to be given by equations (3.24)
x y

and (3.25). From equation (3.24) we find that the x-derivative of the tangential

component of the surface displacement is given by the formula

S0

au 0(x, 0) 'cr I 2c2l cyr 11 2c2
G x - x _-~ ,>(l L) R2 ) (4.21)

in which we have used the notation

R2 2 2

We then ea~ily derive the formula

Gli•U(•) = V(2o) •(x +){Kl(±sgnB ) - ciE}e-cI0

/(2 • ( jl+) cI (4.23)

for gu(&) and we already have the formula (3.30) for (

Substititing from equations (4.23) and (3,30) into equations (4.13),

(4.14), (4.18) and (4,19) we obtain the formulae

/(2.r).( i+ 1)1 + + 1+K c
Si(2c2(1 +)[1K 2  + K -2K +F} 1 K2

(K2r K 2+ K2+ 1' 1
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1 2

+~~ _____ +1 (r K 1 Kie,-.1 /(2wr)-(K 1+l1 L + Kc 2r + 2jj lK 1 r+.sp - 2 1K 1 H

+ yr ~ [l(Kc + 1) j-'lK 2 {j-k

Y 1 + 2 1+ .. + IC1 e- c I
+V7(2n)(K 1 + 1) (1 + i r2 1 + K +f

xr 2- K2 K-1 (Kll1K1)(Kl e- C

f2 ) V'(2 -u) -( K +1) isn&)K" 1+Kr K2 r fci + T+ 7K
1K(2 1 In

Y r F(l) + 1) -K K 2 -C

((2 7)(K,_+ 1) 2L(1 + Kr ) + 12 TKr +J - 7 j

For example, in the case in which X = 0. iuation (4.15) gives
12+2)2

2(xx yy

"2 /(2'1)T(K + [ IT+ K) K,+ ,5.r +K 2 +rI+ I K+rJ

from which it follows that

1( 2x + 2 Y + ic 22OS21

whxx 2 the T)ot KI and Y2 +re y t

wherexmli the cnts asdae deinedic by the euations(.5 ie
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i1 2n.c,(1 + K?)' '2 2 2w (K1 + 1) (+ K 2 +

and rl, 81 are defined by the first equation of the pair (3.35).

Similarly from equations (4.16) and (4.17) we deduce that

1 2 2 c 4c2

-(a - a 2 --- y sin36 - iO+ cse+2 cs6 4 i3,2 xx yy r 1 1 -Y 3sinb +Y• i cos28 1 + 2Y2CoS48 1 ) - r Y2 Sin381 ]
11

2 Y c 4c 2

a 2 Y [v cos361 - Y3 cos 1 - c(Y sin21 + 2y sin4el) 4- 2cos3e O
xy r1  1 r1 4 1 2 1 r22 1

where the constants Y3 and Y4 are defined by the equations

K '2 1 +1FK 2K ?(2K 2 + 1)1
3 1r (K2 + P)' 4 K •1i2 (K + I 1+K K +

5. Griffith Ctack at the Interface of Two Half-Planes.

We now consider the probleta of determining the distribution of stress

in the vicinity of the Griffith crack, described by the relations

-1 ' x < L; y = 0,

at the incerface of the two half-planes: y - 0 which is cccupied by elastic

material with :onstants G1, K and y , 0 wbich is accupied by elastic material

with :onstants G2 , K2

If we assume tha' the upper and liwer faces of the cracK are each subjected

to a pres--ribed 2r-2asure p(x), we see that inside the crack aiea we have the

conditions

c, (x 0*.' = (X, 0-) = -p(xZ 1xi • 1. (5.1)
xY xyY

0'(x, 0-') = ', (x, 0-) 0 1x , (5.2)
xy xy
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and that on the region of the interface outside the crack we have the conditions

u x X, 0+) - u xX, 0-) lxi > 1, (5.3)

U(X, 0+) - u y(x, 0-). xi > 1, (5.4)

a yy(X, 0+) - yy(X, 0-) lxi > 1, (5.5)

a xy(X, 0+) - axy (X, 0-) IxI > 1, (5.6)

Adopting the notation

u ip*[ý- {A1 - 1 !(A1 - B *lly}e-Il~Y; - x], y > 0
-1Xy)-(5.7)

iF*[& {A2 + K2 (A2 + B2 )&ily}eIl~Y; • x], y < 0

SF*[10-I1{B1 K1 (A1 - B1) 1 •;y~e • x], y > 0
u .( x , y) =(5 .8 )u F*[i&I-I{B2 - K2lA2 + B2 ) I&Iy}e1ý 1y; x , xy < 0

we see from equations (3,13), (3.20) that the conditions (5.1), (5.5) together

imply that

K1(K2 - 1)rA2 - K1 (K 2 + 1)rB2 - K 2 (K1 - 1)A1 + K 2 (K1 + 1)Bl,

Similarly from equations (3.12) and (3M19) we see that the boundary conditions

(5.2) and (5.6) are equivalent to the equation

K1(K2 + 1)rA2 - Ki(K2 - 1)rB2 . - 2 (K + 1)A - K 2 ( K -1I)B1

Solving these equations for A2 and B2 in terms of A and B we find that

1 1
K IA 2 (Q) 2-(<2 + 1)Ai(4 - 1 Ki 2 - 1)B.(•) (5,9)

1( 2 < 1 2 1I(I
KirB -! <1<2 I (&) - 2 K + 1)BI(W) (5.10)



22

from •hich we deduce immediately that

-1 -1K 2 1(A2 + B2) '- r-r (A,+ B1 )

Now from equations 5.7) and (5.8) we see that tle boundary conditions

(5.3) 1and (5.4) are equivalent to the conditions

- A2(01 x] - 0, .xi > 1,

F*[,,r -l II IQ) - B22(0); x] a 0, Ijx > 1,

respectively, and using equations (5.9t, (5.10) we may reduce these in turn to

F*[i-(K r-+ 2K Kj+12 + l) +2(K72 1)B 1 (Q)}; x] - 0, IxI > 1 (5.11)

F*[IrI 1(1(( -2 1) 1() + [Klr + I(KlK2 + l)]B(Q)1; x] - 0, IxI > 1. (5.12)

Usi g equation (2.13) we see that the condition (5.1) iu equivalent to

F*[( - 1)A (Q) + (K 1 + l)B (W; x] • KlGl 1 p x), lxi < 1 (5.13)

and t1at using equation (3.12) that (5.2) is equivalent to

F*[isgn•{f :1 + I)A1 (4) + (KIC" 1)BI(Q); x] 1 0, Ixi < 1. (5.14)

If we now express AI(1) and a1(k) in terms of two new functions *(•) and

Q(•)!'through the cquations

r)l- r~ 1 l)c() 1 -

K1(K r) + K r)A ( K) r + !(K +1 ) (5.15)
1 ' 1 2 11

(K + r)(l + K1 F)B1(•) - - 1Q) l)•() + + K + (.16)

we may reduce the equations (5.11) through (5.14) to the set of simultaneous

dual integral equatiors
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F*[a#(4) + 0(9); x - f(x), i x < 1

-1
F*[sgLs { F* (9) + a*(t)}; x] - 09 lxi < 1

();x- 0, lxI > 1

in which a and 6 are constants defined by the 'equatione

a (I (1 -lr - (ic2 -1),- /3 =(K-1 + 1)r + (K 2 + ) (5.18)

and the function f(x) may be calculated from the prescribed function p(x)

by means of the equation

f(x) = {G1 (K 2 +r)(l + K r)}-lp(x). (5.19)

It should be noted that

2 22 a = 4(2 + r)(l + K r). Q.20)

Tiese equations may be solved by standard methods; their solution and

its implications for fracture mechanics will be considered in A future publication.

tIt is of interest to note that th& solu.ion of these equations may be

reduced to that of a singular integral equation by the following de~ice:

If we integrate, with respect to x, the first two ýquations of the set

(5.17) re see that they can be written in the alternative form

aF*[(U- 0(t); x] + OF*[isgný.191"l,0t); x] F F(x) + C1,

aF*[isgnCi4ol l(F); x] - OF*[1Il-l*(t); x] -C2,

where & and C are arbitrary constants and F'(x)-= f(x). Now if we let
1 2 1

F*[iE-( O); x (x)HU(l -x),

F*[ -1*(0); x] '(x)H( -X).
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we automatically satisfy the third and fourth equations of the set (5.17),

and can write these last two equations in the form

Qc(x) + 1-)dt F(x) + Cis I < 1

a f (t)dt O- 8(x) - C2 , xi < 1

in integrals being interpreted as Cauchy principal values. If we write

cz(x) - iOT(x) - X(x), C1 + iC 2 - Y

we may write this pair of singular integral equations as the single equation

X(x) + X( - t_ - F(x) +y.

6. Elastic Half-Space Bonded to a Rigid Foundation.

We now consider the special case when the lower half-plane is rigid.

In the elastic medium y > 0 with constants G and K, we may take as the

displacement field

(X, y) , u 0(x, y) + F*[Id- {A - 1'(A - B)I~ly~e-1lY; x] (6.1)

uy(x. y) - uo(x, y) + F*[i-I{A - _-I(A- B) iiy}e-1Y;- x] (6.2)

for which

(x, - 0+) K-iGF*[isgn4{(K + 1)A(4) + (K - 1)B(4)}; x] (6.3)

ay(x, 0+) - ao (X, 0+) - g-GF*((K - I)A(g) + (K + 1)B(4); x]. (6.4)
yy Yy
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Here again, the displacement field (u 0 u0) has the correct singularities
xy

to describe the distribution of body forces in the elastic half-space.

If the elastic medium is bonded to the rigid foundation we have the

conditions

u (x, 0+) - u y(x, 0+) - 0

which from equations (6.1) and (6.2) are equivalent to the pair of formulae

A(ý) "iC(Q)

B(&) - I•l¢)

with

6Q() - F[u(x, 0+); g], v(Q) - F[u (X, 0+); ]
x y

for the determination of the functions A(Q) and B(&). Equations (6.1) and

(6.2) become

Ux(X, y) - uO(x, y) - F*[{l - K-119y}e'iFJYu(4); • ÷ x]

-l11 ]6 )
- K y F*[i~e- YV(); X3 (6.5)

S~~-1 I;
u (x, y) u y) - K y F*(i&e- ut(a); X]y x

- F*[{1 + K-1 jty)e-0Yi(&); -o x] (6.6)

Using the convolution theorem for Fourier transforms we may write these

equations in the form

u (x, y) u U0(x, y) - {G (x - t, y) - G2(x - t. y)}u0(t, 0)dt

f G3 (x - t y, 0)dt, (6.7)
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uy(x, y) -u 0 (x, y) -r G(x-t; y)u°(t, O)dt
J-m 3  x

- {GI(x -t, y) + C,2 (x - t, y)lu (t, O)dt (6.8)

in which the functions GI, G2 , and G3 are defined by th3 equations

Gl(X. yY G (x, y) Y(Y2 x2) , G3 (x, y) 2xy2 (6.9)1W(x2 + y) 2 2Kr(x2 + y2)2 3ir(x2 + y2)

If there is a Griffith crack lxi < 1 at the interface between the elastic

half-space and the rigid foundation the basic boundary value prob!im to be

solved is:

a (X, 0) - -p(x), JXj < 1
yy

a (x, 0) - -q(x), lxi < 1

u (x, 0)- (x, 0)- 0, lxi >1

In this case the solution is given by equations (6.1), (6.2) in which A(Q)

and B(C) satisfy the dual integral equations

F*[(K - 1)A(E) + (K + 1)B(ý); x] - f(x), lxi < 1

F*[isgnt{(K + I)A(Q) + (K - I)B(Q); x] - g(x), lxI < 1

F*[iC-I A(); x] - 0, lxi > 1

Sx] - 0, lxI > 1

where

f(x) - KGl {p(x) + a°0 (x, 0+)}

g(x) - cG{q(x) + ao (X, 0+)}

This is precisely the problem encountered in §5,
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